FULL PAPER

Keiichi Motohashi · Shigeki Inaba · Kozue Anzai Susumu Takamatsu · Chiharu Nakashima

Phylogenetic analyses of Japanese species of Phyllosticta sensu stricto

Received: September 8, 2008 / Accepted: January 23, 2009

Abstract Although the genus concept of *Phyllosticta* s. str. (teleomorph: Guignardia) as defined by van der Aa is widely accepted, the species concept is still controversial because it is often based on the morphology on host plants. In this study, the culture characteristics within Phyllosticta s.str. were examined, and the phylogenetic relationships among Japanese species of Phyllosticta s.str. and its teleomorph Guignardia were analyzed using 18S rDNA sequences. *Phyllosticta* s. str. formed a monophyletic clade. ITS-28S rDNA sequences extracted from fungal cultures derived from various host plants were divided into two subgroups. The first group included cultures from a wide range of host plants and were mainly derived as endophytes from a symptom-less plant. In the second group, cultures from each host plant genus formed distinct clades; these were often isolated as leaf pathogens from diverse plants. Isolates belonging to the first lineage generally grew faster on oatmeal agar. To classify species of *Phyllosticta* it is necessary to consider an integrated approach such as molecular phylogeny, host plant, colony growth, symptoms, and morphological characteristics of the conidiomata.

Key words Endophytic fungi · Phylogeny · Plant pathogenic fungi · Ribosomal DNA · Taxonomy

Introduction

The genus concept of *Phyllosticta* sensu stricto (s. str.) based on the morphological characteristics defined by van der Aa (1973) has been widely accepted. Subsequently, van der Aa

K. Motohashi (🖂)

River Basin Research Center, Gifu University, Yanagaito 1-1, Gifu 501-1193, Japan Tel. +81-58-293-2063; Fax +81-58-293-2063

e-mail: motohashi@green.gifu-u.ac.jp

S. Inaba \cdot K. Anzai National Institute of Technology and Evaluation, Chiba, Japan

S. Takamatsu · C. Nakashima Graduate School of Bioresources, Mie University, Mie, Japan _____

© The Mycological Society of Japan and Springer 2009

and Vanev (2002) published a list of species belonging to the genus *Phyllosticta* s. str. based on the original literature and results of reexamination of herbarium specimens including numerous type specimens. Delimitation of the genus, based on morphological characteristics, and teleomorph-anamorph relationships were indicated. According to van der Aa et al. (1990) and van der Aa and Vanev (2002), only about 7% of the species of *Phyllosticta* sensu lato (s.l.) defined by Saccardo (1878, 1884) and succeeding investigators have been accepted as species of the genus Phyllosticta s. str. amended by van der Aa (1973). Most of the species of Phyllosticta s.l. were reclassified into other coelomycetous genera: 50% in Phoma, 20% in Asteromella, 5% in Phomopsis, and 18% in other genera of Sphaeropsidales, Melanconiales, and even some genera of Moniliales or Ascomycotina. However, species concepts within Phyllosticta s. str. are still controversial (Motohashi et al. 2008). Species of *Phyllosticta* s. str., including its teleomorph *Guig*nardia, are regarded as host specific (monoxenic) according to results of inoculation studies (Stewart 1916; Luttrell 1946, 1948; Reusser 1964). The epithet of a new Phyllosticta species has been given if the host plant and fungal morphology on diseased leaves are different. Although only a rather small group of plant pathogens is really host specific, host specificity for the taxonomy of *Phyllosticta* has been strongly overestimated, and the species epithet is given by distinguishable host, morphology on diseased leaves of host plants, and culture characteristics (van der Aa 1973; van der Aa and Vanev 2002). Based on these criteria, multiple species of Phyllosticta s. str. have been reported to share the same host genus. For example, three species of *Phyl*losticta having distinguishable sizes and shapes of conidia and thicknesses of conidial slime layer have been reported on Smilax spp., namely, Phyllosticta crypta Bissett, P. cumminsii Bissett, and P. subeffusa (Ellis & Everh.) Tehon & G. L. Stout. (Bissett 1979). However, other examples have been shown that do not support this species concept. For example, P. concentrica Sacc., considered to be a plant pathogenic species, is recognized as a polyxenic (wide host range) species having indistinguishable morphology on different host plants, namely, Cryptomeria japonica, Hedera

helix, Heptapleurum venulosum, Ilex spp., *Magnolia* spp., *Rhododendron* spp., and *Taxus* spp. (van der Aa and Vanev 2002).

Crous et al. (2006) revealed the stability of the genus Phyllosticta s. str. as a monophyletic clade within the Botryosphaeriaceae, except P. flevolandica Aa, known only as a soilborne and didymosporous species. Similarly, studies of delimitation of species and host specificity of Phyllosticta have been introduced using molecular phylogenetic techniques. Guignardia endophyllicola Okane, Nakagiri & Tad. Ito [anamorph: P. capitalensis Henn.], recognized as an endophytic species, has been shown to be polyxenic based on the results of comparative studies of morphology on artificial media and sequence analyses of ribosomal DNA internal transcribed spacer regions (rDNA ITS) for cultures isolated from 38 plant families (Okane et al. 2001, 2003). Similar results have been also shown by ITS-RFLP analysis with isolates of endophytic Phyllosticta from 17 species of tropical trees in 17 genera of 14 families in India (Pandey et al. 2003). On the other hand, acceptance of 2 species of Guignardia on Citrus spp., i.e., Guignardia citricarpa Kiely [anamorph: P. citricarpa (McAlpine) Aa] and G. mangiferae A. J. Roy (anamorph: P. capitalensis), is based on culture characteristics, growth rate, thickness of the conidial slime layer, and their nucleotide sequence data, although they have the same size of conidia (Baayen et al. 2002; Meyer et al. 2006; Peres et al. 2007).

This investigation was conducted to reveal the phylogenetic relationships among the Japanese species of *Phyllosticta* s. str. based on analyses of rDNA sequence data and cultural characteristics on artificial medium. Moreover, species concepts of both plant pathogenic and endophytic *Phyllosticta* are discussed based on the use of integrated approaches such as molecular phylogeny, host plant, colony growth, symptoms, and morphological characteristics of conidiomata.

Materials and methods

Identification and fungal isolations

Fresh leaf materials with Phyllosticta and/or Guignardia were collected in the field. Specimens for microscopic observation were made by hand-sectioning the material and mounting the section with Shear's fluid (Chupp 1940). The fungus was identified based on its host plant and morphological characteristics and size of each structure of fungus: i.e., pycnidia/ascomata, conidia and appendage/asci and ascospores, and conidiogenous cells. To obtain living cultures that originated from diseased leaves collected by the authors, the monoconidial isolation method (Nakashima and Kobayashi 1997) was used on Japanese cedar (Crvptomeria japonica) needle decoction agar (Ito et al. 1952) with modifications by Motohashi et al. (2008). A germinated conidium was transferred onto oatmeal agar (OMA) (Difco oatmeal agar; Becton Dickinson, Hunt Valley, MD, USA). Other cultures of *Phyllosticta* spp. and allied genera were obtained from the Microbiological Genebank, National Institute of Agrobiological Sciences (MAFF), Tsukuba, Ibaraki Prefecture, Japan, or Laboratory of Plant Protection, Department of International Agricultural Development, Tokyo University of Agriculture, Tokyo, Japan. These cultures are maintained in MAFF, Biological Resource Center, the National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba Prefecture, Japan, or Culture Collection, Laboratory of Plant Pathology, Mie University (MUCC), Tsu, Mie Prefecture, Japan (Table 1).

Table 1. Sources of the materials used for molecular analysis

MUCC ^a	MAFF ^b	NBRC ^c	Fungal species	Host species	Location in Japan	GenBank accession number	
						18 S	ITS-28S
0010 ^d	240040	102244	Phyllosticta aspidistricola	Aspidistra elatior	Aichi	AB454176	AB454260
0011 ^d	240042	102246	Phyllosticta sphaeropsoidea	Aesculus turbinata	Aichi	AB454177	AB454261
0012 ^d	240041	102245	Phyllosticta concentrica	Rhododendron sp.	Tokyo	AB454178	AB454262
0014 ^d	240044	102248	Phyllosticta alliacea	Allium fistulosum	Shizuoka	AB454179	AB454263
0015 ^d	240045	102249	Phyllosticta alliacea	Allium fistulosum	Shizuoka	AB454180	AB454264
0016 ^d	240046	102250	Phyllosticta minima	Acer pycnanthum	Aichi		AB454265
0017 ^d	240047	102251	Phyllosticta kerriae	Kerria japonica	Aichi	AB454181	AB454266
0018 ^d	240048	102252	Phyllosticta sp.	Pieris japonica subsp. japonica	Tokyo	AB454182	AB454267
0019 ^d	240049	102253	Phyllosticta ampelicida	Parthenocissus tricuspidata	Aichi		AB454268
0021 ^d	240050	102254	Phomopsis sp.	Cercis canadensis	Aichi	AB454182	
0024 ^d	240053	102256	Phyllosticta ligustricola	Ligustrum obtusifolium	Kumamoto	AB454269	
0027 ^d	240056	102257	Phyllosticta concentrica	Magnolia liliiflora var. gracilis	Aichi	AB454183	AB454270
0028 ^d	240057	102258	Phyllosticta cryptomeriae	Cryptomeria japonica	Toyama	AB454184	AB454271
0029 ^d	240058	102259	Phyllosticta capitalensis	Acer sp.	Aichi	AB454185	AB454272
0030 ^d	240059	102260	Phyllosticta capitalensis	Dendropanax trifidus	Aichi	AB454186	AB454273
0031 ^d	240060	102261	Phyllosticta ardisiicola	Ardisia crenata	Aichi		AB454274
0032 ^d	240061	102262	Phyllosticta concentrica	Hedera rhombea	Aichi	AB454187	AB454275
0037	236403		Phyllosticta ampelicida	Parthenocissus tricuspidata	Tokyo		AB454276
0038	236703		Phyllosticta harai	Aucuba japonica	Kagoshima	AB454188	AB454277
0039	237027		Fusicoccum aesculi	Chaenomeles speciosa	Shimane		AB454278
0041	237042		Guignardia sp.	Psidium guajava	Okinawa	AB454189	AB454279
0042	237091		Guignardia sp.	Farfugium japonicum	Kanagawa	AB454190	AB454280

Table	1.	Continued

ce mai indice i ungui species	CC^{a}	MAFF ^b	NBRC ^c	Fungal species
-------------------------------	----------	-------------------	-------------------	----------------

MUCC ^a	MAFF ^b	NBRC ^c	Fungal species	Host species	Location in Japan	GenBank accession number	
						18 S	ITS-28S
0043	237096		Phyllosticta harai	Aucuba japonica	Osaka	AB454191	AB454281
0044	237099		Guignardia sp.	Kalmia latifolia	Tokyo	AB454192	AB454282
0045	237100		Guignardia ardisiae	Ardisia japonica	Tochigi	AB454193	AB454283
0046	237127		Guignardia sp.	Rhododendron indicum	Tokyo		AB454284
0047	237181		Phyllosticta sp.	Nerium oleander	Okinawa	AB454194	AB454285
0049	237283		Phyllosticta kobus	Magnolia kobus	Ibaraki	AB454195	AB454286
0050	237515		Guignardia sp.	Podocarpus macrophyllus	Nagasaki	AB454196	AB454287
0051	237519		Guignardia sp.	Ilex crenata	Kanagawa	AB454197	AB454288
0052	23/521		Guignardia sp.	Ilex crenata	Ibaraki	A D 45 4100	AB454289
0054	23/895		Fusicoccum aescuii Diviliantiata kabus	Eriodotrya japonica Magnalia kabus	Chiba	AB454198	
0055	237203		Phyllosticta camalliae	Mugnolla kobus Camellia japonica vor hortensis	Kanagawa	AB454199	A B / 5 / 200
0059	230155		Eusicoccum aasculi	Swida controvarsa	Chiba	AB454200	AD4J4290
0062	305187		Phyllosticta phaseolina	Phaseolus vulgaris	Ianan	AB454202	
0064	305980		Phoma destructiva	Lycopersicon esculentum	Tokvo	AB454202	
0065	410091		Phyllosticta miurae	Lindera praecox	Mie	AB454204	AB454291
0066	410092		Guignardia sawadae	Cryptomeria japonica	Niigata	AB454205	AB454292
0069	410183		Botryosphaeria laricina	Larix kaempferi	Hokkaido	AB454206	
0070	410184		Botryosphaeria laricina	Larix kaempferi	Hokkaido	AB454207	
0071	410185		Botryosphaeria laricina	Larix kaempferi	Hokkaido	AB454208	
0072	410186		Botryosphaeria laricina	Larix kaempferi	Hokkaido	AB454209	
0073	410187		Botryosphaeria laricina	Larix kaempferi	Hokkaido	AB454210	
0074	410188		Botryosphaeria laricina	Larix kaempferi	Hokkaido	AB454211	AB454293
0075	410303		Phyllosticta cryptomeriae	Cryptomeria japonica	Miyagi		AB454294
0076	410304		Phyllosticta cryptomeriae	Cryptomeria japonica	Mie	AB454212	AB454295
0077	410305		Phyllosticta cryptomeriae	Cryptomeria japonica	Akita	AB454213	AB454296
0078	410306		Phyllosticta cryptomeriae	Cryptomeria japonica	Akita		AB454297
0079	410307		Phyllosticta cryptomeriae	Cryptomeria japonica	Japan	1. D. 15 101 1	AB454298
0080	410308		Phyllosticta cryptomeriae	Cryptomeria japonica	Ishikawa	AB454214	AB454299
0081	410309		Phyllosticta cryptomeriae	Cryptomeria japonica	Tokyo	A D 45 401 5	AB454300
0083	410349		Phyllosticta populorum Phyllosticta aleidea	Populus sp.	Tokyo	AB434213	
0085	410550		Phyllosticta aleidas	Populus tremuta val. stedotati	Taliagata	AD434210	
0085	410351		Phyllosticta harai	Aucuba japonica	Tokyo	AB454217 AB454218	A B 454301
0087	410353		Phyllosticta azavinhi	Ilar nadunculosa	Hiroshima	AB454210	AB454302
0080	410355		Phyllosticta gardeniicola	Gardenia jasminoides	Tokyo	AB454220	AB454302
0091	410609		Guignardia sp.	Podocarpus macrophyllus	Tokyo	AB454221	AB454304
0092	410706		Guignardia cryptomeriae	Cryptomeria japonica	Kvoto	AB454222	AB454305
0096	410710		Guignardia cryptomeriae	Thuiopsis dolabrata	Ishikawa	AB454223	
0097	410712		Guignardia cryptomeriae	Cryptomeria japonica	Kvoto	AB454224	
0098	410717		Guignardia cryptomeriae	Cryptomeria japonica	Kyoto	AB454225	
0099	625040		Phomopsis amygdali	Amygdalus persica	Niigata	AB454226	
0100	625042		Phomopsis amygdali	Amygdalus persica	Niigata	AB454227	
0101	625044		Phomopsis amygdali	Amygdalus persica	Shizuoka	AB454228	
0103	712088		Phyllosticta petasitidis	Farfugium japonicum	Mie	AB454229	
0105	726550		Phoma lycopersici	Lycopersicon esculentum	Miyazaki	AB454230	
0106	726583		Phoma macrostoma var. incolorata	Cynara scolymus	Mie	AB454231	
0107	726585	1000	Phoma exigua var. exigua	Cynara scolymus	Mie	AB454232	1 7 15 1000
0112 ^d	240051	102265	Phyllosticta sphaeropsoidea	Aesculus carnea	Toyama	AB454233	AB454306
0113 ⁻	240051	102266	Phyllosticta fallopiae	Fallopia japonica	Aichi	AB454234	AB45430/
0114 0116 ^d	240054	102207	Phyllosticta capitalensis	Cercis canadensis Sanoan dua alabua	Alchi	A D 45 4225	AB454508
0110 0117 ^d		102208	Bhyllostista gardaniicola	Sarcanara giabra Cardania iasminoidas	Ajahi	AD434233	AD434309
0117 0118 ^d	240055	102209	Guignardia sp	Ardisia cranata	Aichi	AB454230	AB454310
0110 0110 ^d	240033	102270	Guignardia sp.	Triteleja hridaesii	Aichi	AB454237	AB454311
0120^{d}		102271	Phyllosticta ampelicida	Parthenocissus tricuspidata	Aichi	AD7J4230	AB454313
0121 ^d		102273	Phyllosticta aspidistricola	Aspidistra elatior	Shizuoka		AB454314
0122 ^d		102274	Phyllosticta capitalensis	Aspidistra elatior	Aichi	AB454239	AB454315
0123 ^d		102275	Phyllosticta minima	Acer pychanthum	Aichi	1. 10 10 1207	AB454316
0124 ^d		102276	Phyllosticta sp.	Pachysandra terminalis	Hokkaido	AB454240	AB454317
0125 ^d			Phyllosticta sp.	Pyrola asarifolia subsp. incarnata	Nagano	AB454241	AB454318
0147 ^d			Phyllosticta concentrica	Rhododendron keiskei	Nagano	AB454242	AB454319
0148 ^d		102284	Phyllosticta minima	Acer crataegifolium	Nagano		AB454320
0149 ^d			Phyllosticta hamamelidis	Hamamelis japonica	Gifu	AB454243	AB454321
0150 ^d			Phyllosticta hamamelidis	Hamamelis japonica var. discolor f. obtusata	Aomori	AB454244	AB454322

Table 1.	Continue	ed					
MUCC ^a	MAFF ^b	NBRC ^c	Fungal species	Host species	Location in Japan	GenBank accession number	
						18 S	ITS-28S
0151 ^d			Phyllosticta hamamelidis	Hamamelis japonica subsp. megalophylla	Gunma	AB454245	AB454323
0152 ^d			Phyllosticta hamamelidis	Hamamelis japonica	Aichi	AB454246	AB454324
0153 ^d			Phyllosticta hamamelidis	Hamamelis japonica	Ibaraki	AB454247	AB454325
0154 ^d	240062		Guignardia alliacea	Allium fistulosum	Shizuoka	AB454248	AB454326
0155 ^d	240063		Guignardia alliacea	Allium fistulosum	Shizuoka	AB454249	AB454327
0156 ^d			Phyllosticta minima	Acer pycnanthum	Nagano		AB454328
0158 ^d			Phyllosticta sp.	Gaultheria shallon	Japan	AB454250	AB454329
0159 ^d 0206 ^d			Phyllosticta capitalensis Phyllosticta cruenta	Hydrangea quercifolia Polygonatum odoratum var. pluriflorum	Aichi Mie	AB454251	AB454330 AB454331
0207			Phyllosticta capitalensis	Ginkgo hiloha	Japan	AB454252	AB454332
0208			Phyllosticta capitalensis	Pittosporum tobira	Japan	AB454253	AB454333
0209			Phyllosticta capitalensis	Eriobotrva japonica	Japan	AB454254	AB454334
0210			Phyllosticta capitalensis	Ligustrum lucidum	Japan	AB454255	AB454335
0211			Phyllosticta capitalensis	Lithocarpus edulis	Japan	AB454256	AB454336
0212			Phyllosticta capitalensis	Nerium oleander var. indicum	Japan		AB454337
0213			Phyllosticta capitalensis	Osmanthus fragrans var. aurantiacus f. aurantiacus	Japan	AB454257	AB454338
0214			Phyllosticta capitalensis	Robinia pseudoacacia	Japan	AB454258	AB454339
0215			Phyllosticta capitalensis	Cercidiphyllum japonicum	Japan	AB454259	AB454340
0409 ^d			Phyllosticta sp.	Fraxinus angustifolia	Tokyo		AB454341
0410 ^d			Phyllosticta conjac	Amorphophallus rivieri	Aichi		AB454342
0411 ^d			<i>Guignardia</i> sp.	Disanthus cercidifolius	Kumamoto		AB454343
0412 ^d			Phyllosticta sp.	Podocarpus macrophyllus	Toyama		AB454344
0413 ^d			Phyllosticta sp.	Paeonia lactiflora var. trichocarpa	Tokyo		AB454345
0425 ^d			<i>Phyllosticta</i> sp.	Nandina domestica cv. otafukunanten	Tokyo		AB454346
0426 ^ª			<i>Phyllosticta</i> sp.	Cercis chinensis	Aichi		AB454347
0428			<i>Phyllosticta</i> sp.	<i>Oxypetalum</i> sp.	Fukuoka		AB454348
0432			<i>Phyllosticta</i> sp.	Rhaphiolepis indica var. umbellata	Kagoshima		AB454349
0433			<i>Phyllosticta</i> sp.	Schefflera heptaphylla	Okinawa		AB454350
0435			Guignardia sp.	Smilax china	Okinawa		AB454351
0436			<i>Phyllosticta</i> sp.	Aucuba japonica	Ibaraki		AB454352
0437			Phyllosticta sp.	Cinnamomum insularimontanum	I okyo		AB454353
0440			Phyllosticia sp.	Pittosporum todira	Kagosnima		AB454354
0441 0442 ^d			Guignaraia sp.	Poaocarpus macrophylius	Fukuoka Talaua		AB454355
0445			Phyllosticia capitalensis	Daviala involucrala Condulino fruticoga	Tokyo		AB434330
0521			Cuignardia sp	Laugothog keiskai	Lopon		AD434337
0522			Guignardia sp.	Alwus sieholdiana	Tokyo		AB454550
0523			Guignardia sp.	Alnus stebolutunu Ilar chinansis	Fukuoka		AB454360
0542	240100		Phyllosticta capitalansis	Spathinkyllum sp	Okinawa		AB454361
0543	240200		Phyllosticta sp	Rohdea japonica	Ibaraki		AB454362
0544 ^d	240200		Phyllosticta sp	Aucuba japonica	Tochigi		AB454363
0547			Phyllosticta sp	Gelsemium sempervirens	Tokyo		AB454364
0548			Phyllosticta sp.	Amacrinum sp	Tokyo		AB454365
0549			Phyllosticta concentrica	Hedera rhombea	Tokyo		AB454366
0550			Phyllosticta sp.	Cyclamen persicum	Tokvo		AB454367
0551			Phyllosticta sp.	Liriodendron tulipifera	Tokvo		AB454368
0552			Phyllosticta sp.	Chlorophytum comosum	Tokyo		AB454369
0553			Phyllosticta sp.	Leucothoe catesbaei	Tokyo		AB454370
0554			Phyllosticta sp.	Gardenia jasminoides	Tokyo		AB454371
0555			Phyllosticta sp.	Vaccinium sp.	Tokyo		AB454372
0556			Phyllosticta sp.	Pachysandra terminalis	Tokyo		AB454373
0562			Phyllosticta cruenta	Polygonatum odoratum var. pluriflorum	Tokyo		AB454374

^aMUCC; Lab. of Plant Pathology, Mie University ^bMAFF; the Microbiological Genebank, National Institute of Agrobiological Sciences ^cNBRC; Biological Resource Center, the National Institute of Technology and Evaluation ^dIsolations collected by authors in this study

rDNA extraction and polymerase chain reaction (PCR) amplification

All cultures were grown on OMA plates at 22°C. Agar blocks with mycelium were cut from the plates with a sterilized plastic straw. Extraction of whole-cell culture DNA was performed using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. Amplification of the two internal transcribed spacers (ITS1 and ITS2) including the 5.8S rDNA gene region and 28S rDNA region was performed by PCR using primer sets ITS5 and NL4 according to O'Donnell (1993) and White et al. (1990). Similarly, the 18S rDNA region was amplified using primers no. 1 (5'-CTGGTTGATCCTGCCAGT-3') (Hendriks et al. 1989) and NS8 (White et al. 1990). PCR on a T Gradient Thermocycler (Biometra, Goettingen, Germany) was performed in a 25-µl reaction mixture containing 5 µl template DNA, 0.5 µl KOD-plus DNA polymerase (Toyobo, Osaka, Japan), 0.375 µl each primer, 2.5 µl $10 \times PCR$ buffer, 2.5 µl dNTPs (2 mM), 2 µl MgSO₄ (25 mM), and 11.75 µl distilled water. The thermal cycler program was as follows: 2 min at 94°C followed by 30 cycles of 15 s at 94°C, 30 s at 60°C (for 18S region) or 56°C (for ITS and 28S region), 110 s (for 18S region) or 70 s (for ITS and 28S region) at 68°C, with a final extension period of 10 min at 68°C. Following amplification, the PCR products were purified with the Agencourt AMPure PCR Purification System (Beckman Coulter, Fullerton, CA, USA) according to the manufacturer's instructions.

DNA sequencing

Amplified products were sequenced with the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) on an Applied Biosystems 3730xl DNA Analyzer DNA Sequencing System (Applied Biosystems). For amplification for sequencing of the 18S region, the primers no. 1, NS2, NS3, NS4, NS5, NS6, NS7, and NS8 (White et al. 1990) were used. Similarly, for amplification of the ITS and 28S rDNA region sequencing, the primers ITS5, ITS2, ITS3, ITS4, NL1, and NL4 (White et al. 1990; O'Donnell 1993) were used. For removal of the unincorporated dye terminators, dye-labeled products were purified with the Agencourt CleanSEQ (Beckman Coulter) according to the manufacturer's instructions.

Phylogenetic analyses

The obtained sequences in this study were aligned with MAFFT version 6.240 with E-INS-i option (Katoh et al. 2002, 2005). Sequences were truncated at the 5'- and 3'-ends and manually aligned when necessary using BioEdit version 7.09 (Hall 1999). At this point, ambiguously aligned sites were removed. The alignment files of 18S and ITS-28S rDNA were deposited in TreeBASE (http://www.treebase.org/treebase/) under the accession number of PIN 1102. Phylogenetic trees were obtained from the data using neighbor-joining (NJ) (Saitou and Nei 1987), maximum-

parsimony (MP), and Bayesian phylogenetic analyses. The best-fit evolutionary model was determined for each dataset by comparing different evolutionary models via the Akaike information criterion (AIC) (Akaike 1974) using PAUP* version 4.0b10 (Swofford 2002) and MrModeltest version 2.2 (Nylander 2004). As the result of calculations, 18S, ITS1, and 28S regions were fitted to a general time-reversible model with a proportion of invariable sites and a gamma-shaped distributed rate (GTR + I + G) (Tavaré 1986). ITS2 and 5.8S regions were fitted to an evolutionary model of GTR + G and K80 + I (Kimura 1980), respectively. The combined dataset of the ITS and the 28S regions was fitted to the GTR + I + G model.

NJ and MP analyses with the selected evolutionary model were performed in PAUP*. For NJ analyses, distance was measured by the maximum-likelihood model as the selected evolutionary model. Ties were broken randomly when encountered. MP analysis was performed for 100 replications with different random starting points using the stepwise addition option to increase the likelihood of finding the most parsimonious tree. Alignment gaps were treated as missing data, and all characters were unordered and had equal weight. The branch-swapping algorithm was tree-bisection-reconstruction (TBR). Branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. The best tree topology of MP trees was conducted using the Kishino-Hasegawa likelihood test (Kishino and Hasegawa 1989) on PAUP*. Tree length (TL), consistency index (CI), retention index (RI), and rescaled consistency index (RC) were calculated.

The strength of the internal branches from the resulting tree was tested by bootstrap (BS) analysis (Felsenstein 1985) using 1000 replications in both distance and parsimony analysis. Moreover, decay indexes (DI) (Bremer 1988, 1994; Donoghue et al. 1992) were calculated from MP trees and the dataset using AutoDecay version 5.04 for Perl (http://www.bergianska.se/), with almost the same options as the parsimonious method used in this study and PAUP*.

Bayesian phylogenetic analyses with the selected evolutionary model were done using MrBayes version 3.1.2 (Ronquist and Huelsenbeck 2003). It was launched with random starting trees for 5×10^6 (in ITS and 28S regions) and 10×10^6 (in 18S region) generations, and the Markov chains were sampled every 100 generations. To ensure that the Markov chain did not become trapped in local optima, we used the Metropolis-coupled Markov chain Monte Carlo (MCMCMC) algorithm, performing the estimation with four incrementally heated Markov chains. In each of these analyses, the first 7682 000 in 18S and 3705 000 in ITS and 28S generations were discarded as burn-in. The remaining trees were summarized in a 50% majority-rule consensus tree, yielding the probabilities of each clade being monophyletic.

In 18S rDNA analysis, *Guignardia mangiferae* (AB041247–AB041249), *Phyllosticta pyrola* (Ehrenb.) Allesch. (AB041250), *Phoma medicaginis* Malbr. & Roum. var. *medicaginis* (DQ109961), and *Phoma herbarum* Westend. (AY337712) were added to the data set, and

Table 2.	Growth of isolates aft	er 7 days in	darkness at 22°	° and 28°C on oatmea	l agar	(OMA)
----------	------------------------	--------------	-----------------	----------------------	--------	-------

Group 1a					Group 1b			
MUCC	Host species	22°C (mm)	28°C (mm)	MUCC	Host species	22°C (mm)	28°C (mm)	
0012	Rhododendron sp.	31	45	0010	Aspidistra elatior	6	0	
0027	Magnolia liliiflora var. gracilis	42	50	0011	Aesculus turbinata	19	22	
0029	Acer sp.	30	46	0016	Acer pycnanthum	17	18	
0043	Aucuba japonica	31	38	0017	Kerria japonica	28	42	
0065	Lindera praecox	28	41	0018	Pieris japonica subsp. japonica	15 ^a	$18^{\rm a}$	
0066	Cryptomeria japonica	34	47	0024	Ligustrum obtusifolium	17 ^a	6 ^a	
0112	Aesculus carnea	31	48	0028	Cryptomeria japonica	29	18	
0113	Fallopia japonica	34	52	0031	Ardisia crenata	33	42	
0122	Aspidistra elatior	34	50	0038	Aucuba japonica	20	20	
0208	Pittosporum tobira	26	37	0045	Ardisia japonica	16 ^a	20 ^a	
0212	Nerium oleander var. indicum	29	46	0049	Magnolia kobus	0	0	
0213	Osmanthus fragrans var.	27	42	0050	Podocarpus macrophyllus	24	26	
	aurantiacus f. aurantiacus			0052	Ilex crenata	0	0	
0215	Cercidiphyllum japonicum	32	50	0116	Sarcandra glabra	26	20	
0410	Amorphophallus rivieri	33	47	0117	Gardenia jasminoides	17	19	
0411	Disanthus cercidifolius	33	52	0118	Ardisia crenata	33	40	
0413	Paeonia lactiflora var. trichocarpa	34	55	0124	Pachysandra terminalis	40	27	
0426	Cercis chinensis	27	41	0125	Pyrola asarifolia subsp.	49	61	
0435	Smilax china	33	50		incarnata			
0443	Davidia involucrata	34	46 ^a	0148	Acer crataegifolium	15	17	
0542	Spathiphyllum sp.	33	47	0149	Hamamelis japonica	16	22	
0543	Rohdea japonica	39	55	0156	Acer pycnanthum	13	19	
				0206	Polygonatum odoratum var. pluriflorum	0	4	
				0409	Fraxinus angustifolia	27	39	
				0412	Podocarpus macrophyllus	9	11	
				0425	Nandina domestica cv. otafukunanten	24	40	
				0432	Rhaphiolepis indica var. umbellata	26	28	
				0433	Schefflera heptaphylla	39	44	
				0440	Pittosporum tobira	5	6ª	
				0521	Cordyline fruticosa	26	32	
				0524	Ilex chinensis	29	21	
				0544	Aucuba japonica	18	17	

^a Isolations that produced yellow pigmentation on oatmeal agar (OMA)

Peziza echinospora (AF006309) and *Phillipsia domingensis* (AF006315) were used as outgroup taxa, based on Lutzoni et al. (2004).

Colony growth

For a comparative study of the growth of mycelial colonies, 52 cultures isolated from 44 plant species in 38 genera of 29 families were examined (Table 2). Mycelial colonies grown on OMA plates at 22°C in darkness for 2–4 weeks were transferred to OMA plates and incubated at 22° and 28°C under dark conditions. Growth of the colonies was measured 7 days after incubation.

Results

Molecular phylogenetic analyses

The 18S rDNA sequences of the 91 strains of coelomycetous fungi were aligned with 7 sequences obtained from the DNA database (see Table 1). The aligned data matrix of 93 sequences consisted of 1723 characters, of which 241 characters were variable and 171 characters were phylogenetically informative for parsimony analysis. The MP analysis using PAUP* generated 424 equally parsimonious trees with 341 steps (CI = 0.7988, RI = 0.9514, RC = 0.7600). Although slight differences in small branching orders of the terminal branches and branch length were observed, tree topologies were generally consistent among all 424 trees (data not shown). Moreover, topology of the tree generated by the Bayesian phylogenetic analysis (Fig. 1) was similar to the NJ and MP trees. As shown in Fig. 1, the 84 sequences obtained were divided into four groups (groups 1 to 4). All groups were strongly supported with 100% in BS values in the NJ analysis, 97% or higher in the MP analysis, 2 or higher in the DI, and 0.98 and higher in the Bayesian PP. Group 1, without exception, consisted of sequences of Phyllosticta s. str. and its teleomorph, Guignardia, containing 59 newly obtained sequences in this study and 4 sequences of Guignardia obtained from the DNA database. Group 2 mainly consisted of sequences of Fusicoccum/Botryosphaeria, including the type species of the genus, Fusicoccum aesculi Corda. As the exceptions, the sequences of Guignardia cryptomeriae Sawada on Cryptomeria japonica

Fig. 1. Phylogenetic tree based on nuclear 18S rDNA sequence for genera *Fusicoccum* (teleomorph: *Botryosphaeria*), *Phoma, Phmopsis*, and *Phyllosticta* (teleomorph: *Guignardia*) inferred by Bayesian analysis. Nodes of support values are shown above and below. *NJ BS*,

neighbor-joining bootstrap values; *MP BS*, maximum-parsimony bootstrap values; *Bayesian PP*, estimates of posterior probabilities; *DI*, decay index. Nodes supported by >90 NJ and MP BS, >0.95 Bayesian PP, and >2 decay index are indicated by *thick lines*

(MUCC0092, -0097, and -0098) and on *Thujopsis dolabrata* (MUCC0096) were located in group 2. Group 3 consisted of sequences of another coelomycetous genus, *Phoma. Phyllosticta populorum* Sacc. & Roum. (MUCC0083) and *P. alcides* Sacc. (MUCC0084 and -0085) were included as exceptions. Similarly, group 4 consisted of sequences of *Phomopsis*, but included an exception sequence, *Phyllosticta petasitidis* Ellis & Everh. (MUCC103).

A total of 112 ITS-28S sequences of *Phyllosticta* s. str. were aligned with three outgroup sequences from the results of Bayesian phylogenetic analysis for the 18S regions. The aligned data matrix of 115 sequences consisted of 1252 characters, of which 76 sites were excluded from the analysis because of ambiguity of alignment. Of the remaining 1176 characters, 302 characters were variable and 238 characters were phylogenetically informative for parsimony analysis. MP analysis using PAUP* resulted in the construction of 292 equal MP trees with 739 steps (CI = 0.5467, RI = 0.9052, RC = 0.4949). Tree topologies, which exhibited only slight differences in tiny branching orders of the terminal branches and in branch length, were generally consistent among the 292 trees. One of the trees with the highest log-likelihood value was selected as the best tree (tree not shown). The tree topology in the Bayesian tree was similar to the NJ and MP trees (Fig. 2): a total of 112 sequences of *Phyllosticta* s. str. and its teleomorph Guignardia split into small lineages of two subgroups, 1a and 1b. These lineages were well supported with BS values in the NJ and MP analyses. Similarly, these lineages were supported by the DI and Bayesian PP analysis (BS in NJ and MP = 100%, DI = 15, PP = 1.00). Group 1a consisted of 52 sequences of Phyllosticta s. str. and its teleomorph, Guignardia. This group mainly consisted of cultures isolated from intact leaves without leaf spot. For example, the border of the leaf spot was unclear in the specimen from which MUCC0029 was isolated (see Fig. 4). A similar topology within group 1a was found for the result of MP trees using a dataset of only ITS sequences, including the data for G. mangiferae (from AB041233 to AB041241) (tree not shown). Group 1b consisted of several distinct clades represented by isolates from the host genera Acer, Aradisa, Aspidistra, Cryptomeria, Gardenia, Hamamelis, Ilex, Leucothoe, Pachysandra, Parathenocissus, Podocarpus, and Polygonatum. Typical leaf spots were observed on these plants, i.e., surrounded by a dark brown border in the specimens from which MUCC0016, -0148, -0123, and -0156 were isolated (see Fig. 4).

The isolates of *P. concentrica* [teleomorph: *G. philoprina* (Berk. & M.A. Curtis) Aa], which had been isolated from various plants, were scattered throughout groups 1a (MUCC0012, -0027, -0032, -0066 as synonym *G. sawadae* Tak. Kobay. and 0549) and 1b (MUCC0028 and -0075–0081 as synonym *P. cryptomeriae* Kawam., -0049 as synonym *P. kobus* Henn., -0088 as synonym *P. azevinhi* Torrend, and -0147).

Colony growth

Colonies were black, greenish toward margin, turning black with a lobed greenish margin. Mycelium was dark brown, very dense, but not forming aerial mycelium on OMA. The growth of isolates used in this study is shown in Table 2 and Fig. 3. The isolates belonging to group 1a on the phylogenetic tree of ITS-28S (Fig. 2) grew rapidly at both 22° and 28°C. MUCC0029, belonging to group 1a, grew faster than MUCC0016, -0148, and -0156, which belong to group 1b; however, these four isolates were derived from *Acer*. Similar differences were observed between group 1a and 6 isolates from *Ardisia* spp., *Aseculus* spp., *Aspidistra*, *Aucuba japonica*, *Cryptomeria japonica*, *Ilex* spp., *Magnolia* spp., and *Pittosporum tobira*. Yellow pigmentation was observed at the colony margin in MUCC0018, -0024, and -0045 at 22° and 28°C, and for MUCC0443 and -440 at 28°C.

Discussion

Phylogenetic relationships among the Japanese isolates of *Phyllosticta* s. str., its teleomorph, *Guignardia*, and related coelomycetous genera, namely *Phoma*, *Fusicoccum* (teleomorph: *Botryosphaeria*), and *Phomopsis*, were investigated in this study using NJ, MP, and Bayesian phylogenetic analyses.

In the trees constructed based on the 18S rDNA sequences, four monophyletic clades represented by the respective genera were formed with few exceptions (see Fig. 1). These monophyletic clades were well supported with 98%-100% in BS, 2-58 in DI, and 0.98-1.00 in the Bayesian PP, respectively. For the exceptions, isolates MUCC0092, -0096, -0097, and -0098 were obtained from a culture collection and were supposed to be of Guignardia cryptomeriae Sawada. However, they were placed in group 2, which consisted of *Botryosphaeria/Fusicoccum* species. Culture characteristics of these isolates, having welldeveloped aerial mycelium and a gray to dark-colored colony on OMA, with ovoid, fusiform, or ellipsoid conidia, differed from the typical characteristics of *Guignardia/Phyl*losticta isolates having a colony colored black, greenish toward margin, and conidia globose, ellipsoid, or obovoide in shape, surrounded by a slime layer, with a apical appendage. In Japan, Guignardia canker disease of Cryptomeria japonica and Thujopsis dolabrata, caused by G. cryptomeriae, has been reported by Kobayashi (1957a,b, 1962) and Sawada (1950). Miyashita (2001) suggested that the causal pathogen, G. cryptomeriae, should be transferred to the genus Botryosphaeria on the basis of the results of molecular analysis based on ITS regional sequences. This observation is supported in the present study using the sequences of the 18S rDNA region.

Similarly, *Phyllosticta alcides* Sacc. (MUCC0084 and 0085) and *P. populorum* Sacc. & Roum. (MUCC0083) belonged to group 3, which consists of *Phoma* spp. These two species were treated previously as identical to *Phoma macrostoma* Mont. var. *macrostoma* (Gruyter et al. 2002) and *Phoma macrostoma* Mont. (van der Aa and Vanev 2002), respectively. Similarly, an isolate of *Phyllosticta petastidis* Ellis & Everh. (MUCC0103) belonging to group 4 was identified as a species of *Phomopsis* based on the shape

Fig. 2. Phylogenetic tree based on nuclear internal transcribed spacer ITS and 28S rDNA sequence for *Phyllosticta* s. str. inferred by Bayesian analysis. Nodes of support values are shown above and below. *NJ BS*, neighbor-joining bootstrap values; *MP BS*, maximum-parsimony

bootstrap values; *Bayesian PP*, estimates of posterior probabilities; *DI*, decay index. Nodes supported by >90 NJ and MP BS, >0.95 Bayesian PP, and >2 decay index are indicated by *thick lines*

of fusiform conidia on OMA. Thus, the monophyletic clade (group 1) obtained from the phylogenetic analyses of the 18S rDNA region showed that *Phyllosticta* s. str. and its teleomorph *Guignardia* diverged from a single ancestral taxon.

The phylogenetics tree of ITS-28S rDNA of *Phyllosticta* s. str. and its teleomorph *Guignardia* was divided into two subgroups, 1a and 1b, using NJ, MP, and Bayesian analyses (see Fig. 2). Group 1a consisted of isolates from many different host species. Okane et al. (2003) concluded that *G. endophyllicola* was a polyxenic species inhabiting intact leaves of 67 plant species in 54 genera of 38 families. Baayen et al. (2002) reported that *G. mangiferae* (including *G. endophyllicola* as a synonymous species) is an endophytic polyxenic species isolated from woody plants belonging to numerous families. Okane et al. (2003) speculated that *G. endophyllicola* is a primitive species that has not established strict host specificity. However, the present phylogenetic

Fig. 3. Colony diameter when grown on oatmeal agar medium for 7 days. \bigcirc , Isolates belonging to group 1a; \bigcirc , isolates belonging to group 1b

analyses of ITS-28S regions suggest that the host range of G. mangiferae differentiated from monoxenic into polyxenic. In other words, the fungus might have established a niche as an endophytic fungus in various host plants without killing the host cells. On the other hand, it might have been enclosed or limited in a cell by the protective reaction of host plants after the invasion. For those who adopt the latter hypothesis, it is thought that G. mangiferae had sought a suitable host plant by host-jumping. Within plant parasitic fungi, a powdery mildew genus, Golovinomyces, has been used as a typical example (Matsuda and Takamatsu 2003) of host expansion by host-jumping. If so, the question remains: Is there any species that already specialized in a specific host in group 1a? In the phylogenetic tree of ITS-28S (see Fig. 2), group 1a included three subgroups having one or two site changes in the ITS2 and 28S regions. Among the isolates belonging to group 1a, Guignardia alliacea Motohashi, Jun. Nishikawa & C. Nakash. (Motohashi et al. 2008) (MUCC0014, -0015) has strong pathogenicity to Allium fistulosum. This species may provide supporting evidence of host-jumping. Hereafter, these strains of subgroups within group 1a might differentiate into a new species within suitable and specific host plants after many years. To confirm the hypothesis of host-jumping in the isolates of group 1a, it is necessary to observe the movement of mycelium and response of plant cells in the living tissues after inoculation and also to examine additional samples.

Analyses showed the presence of several clades in group 1b, each of which was parasitic on a single host genus: *Phyllosticta ampelicida* (Engelm.) Aa on *Parthenocissus tricuspidata*, *P. cryptomeriae* Kawam. (synonym: *P. concentrica* Sacc.) on *Cryptomeria japonica*, *P. cruenta* (Fr.) J. Kickx f. on *Polygonatum odoratum* var. *pluriflorum*, *Phyllosticta* sp. and *Guignardia* sp. on *Podocarpus macrophyllus*, *P. hamamelidis* Peck on *Hamamelis japonica*, and *P. minima* (Berk. & M.A. Curtis) Underw. & Earle on *Acer* spp. These monophyletic clades were supported by 100% in BS in NJ and MP analyses, 4 or higher in DI, and 0.98 in Bayesian

Fig. 4. Comparison of symptoms among *Phyllosticta* groups 1a and 1b on *Acer*. **a** Symptoms caused by MUCC0029 (group 1a). **b** Symptoms caused by MUCC0016 (group 1b), same as symptoms caused by MUCC0148, -0123, and -0156

monophyletic clade in group 1b should be recognized as separate species. In group 1b, this phenomenon is exemplified by the species concept of *Phyllosticta* s. str. in which species epithets have been acceptable for isolates from diseased leaves of host plants with distinguishable morphology and culture characteristics (van der Aa 1973; van der Aa and Vanev 2002). The phylogeny of *Phyllosticta* within group 1b is not in accord with the phylogeny of higher plant taxa because both monocotyledonous and dicotyledonous host plants are scattered throughout the group.

PP. From this result, the respective isolates placed in each

Isolates of the polyxenic species P. concentrica (teleomorph: G. philoprina), known as a exceptional species having various host plants regardless of van der Aa's species concept (van der Aa 1973), were scattered throughout groups 1a and 1b. It thus appears appropriate to treat P. concentrica as an unsubstantiated "complex species" composed of several lineages. Phyllosticta cryptomeriae has been treated as a synonymous species of P. concentrica, based on the description of morphological characteristics without the observation of type specimens (van der Aa and Vanev 2002). The isolates of P. cryptomeriae that formed an individual monophyletic clade differed from P. concen*trica* (Fig. 2; BS = 100 in NJ and MP, DI = 5, PP = 1.00). Guignardia sawadae Tak. Kobay. (Kobayashi and Sasaki 1975) has been described as the teleomorph P. cryptomeriae based on the fruiting body formed on Cryptomeria japonica. Although eight isolates of P. cryptomeriae formed a monophyletic clade in group 1b, the isolate of G. sawadae (MUCC0066) located to group 1a with the polyxenic (endophytic) species, G. mangiferae. A difference in colony growth rate was observed between the isolates (see Table 2). As a result, we suggest that *P. cryptomeriae* should be redescribed as a independent species. Similarly, Phyllosticta kobus from Magnolia kobus (MUCC0049) and Phyllosticta *azevinhi* Torrend from *Ilex crenata* (MUCC0051 and 0052) should also each be treated as separate species.

Although some isolates were obtained from the same host plant species, these were placed separately into the monoxenic clade (group 1b) and the polyxenic clade (group 1a). Isolates belonging to the separate clades should be treated as separate species. Bissett (1979) reported differences among three species of *Phyllosticta* on *Smilax* spp. based on size and shape of conidia and thickness of the slime layer. Similarly, Baayen et al. (2002) reported that the slime layer of conidia of *P. citricarpa* is thinner than that of P. capitalensis. Moreover, the colony growth rate of P. citricarpa was slower than that of P. capitalensis, and the former produced vellow pigmentation on OMA. The isolates from Aspidistra elatior are distinguishable from each other in size of conidia (9.5–12.5×8.5–10 µm on MUCC0010 and 0121, 7.4–11 \times 6.1–7.5 µm on MUCC0122). However, differences in size and shape of conidia and thickness of slime layer among the isolates from Acer spp. and Aesculus spp. were not observed. As described above, isolates of group 1a tended to grow fast at both temperatures (Table 2, Fig. 3). However, this does not necessarily differentiate between the isolates of group 1a and 1b. Similarly, the ability to produce yellow pigmentation at the colony margin on OMA was a poor marker for discrimination between these groups. Either character, conidial size or colony growth rate, may be a distinguishable point for grouping discrete isolates originating from the same host plant species. In addition, the leaf symptoms on Acer spp. were easily and clearly distinguishable between group 1a and group 1b (Fig. 4). The different symptoms may exemplify the different behavior of the fungi, i.e., plant pathogens or endophytes (Fig. 4).

The present study has clarified phylogenetic relationships among Japanese species of *Phyllosticta* s.l., especially between plant pathogenic and endophytic species. Phylogenetic analyses of plant pathogenic species support the validity of the species concept of van der Aa and Vanev (2002). Molecular analyses of rDNA were revealed to be useful for reconstruction of the classification of *Phyllosticta*, although group 1a consisted of phenotypically definable plant pathogenic species, namely, P. alliaceae, P. cameriae, P. concentrica, P. conjac, P. cryptomeriae, P. fallopiae, P. miurae, P. sphaeropsoidea, and isolates of unidentified species, some of which are similar or identical with P. capitalensis known as endophytic fungi in ITS-28S rDNA sequence. This result shows classification within group 1a using single-locus analysis should not be considered. Moreover, Phyllosticta alliaceae, having a small difference in its ITS-28S rDNA sequence, has strong pathogenicity to Allium plants with severe symptoms (Motohashi et al. 2008). The acquisition of a specific host plant must be recognized as the point of speciation. Speciation and host specificity within group 1a must be revealed by the more detailed phylogenetic analyses using multiregional sequences, as Taylor et al. (2000) proposed. Similarly, morphology (size and thickness of slime layer of conidia) or colony growth on medium were unsuitable for recognition of species having different nucleotides from the same host genus. In the classification of the genus *Phyllosticta*, it is necessary to consider an integrated approach, such as molecular phylogeny, host, colony growth rate, symptoms, and shape of conidia.

Acknowledgments This work was supported in part by research grant (2006–2008) of the Institute for Fermentation, Osaka, Japan. The authors thank Dr. Dionisio G. Alvindia of Bureau of Postharvest Research and Extension (BPRE), Philippines, for proofreading the article. We also thank Dr. Yasunori Ono of Daiichi Sankyo Co., LTD., Dr. Jun Takeuchi of Tokyo Metropolitan Agriculture and Forestry Research Center and Dr. Yukio Yaguchi of Tokyo University of Agriculture for sending isolates and specimens.

References

- Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716-723
- Baayen RP, Bonants PJM, Verkley G, Carroll GC, Aa HA van der, de Weerdt M, van Brouwershaven IR, Schutte GC, Maccheroni W Jr, Glienke de Blanco C, Azevedo JL (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464-477
- Bissett J (1979) Coelomycetes on Liliales: the genus Phyllosticta. Can J Bot 57:2082-2095
- Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795-803

- Bremer K (1994) Branch support and tree stability. Cladistics 10:295-304
- Chupp C (1940) Further notes on double cover-glass mounts. Mycologia 32:269–270
- Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess T, Barber P, Groenewald JZ (2006) Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235–253
- Donoghue MJ, Olmstead RG, Smith JF, Palmer JD (1992) Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann Mo Bot Gard 79:333–345
- Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
- Gruyter J de, Boerema GH, van der Aa HA (2002) Contributions towards a monograph of *Phoma* (Coelomycetes) VI-2. Section Phyllostictoides: outline of its taxa. Persoonia 18:1–54
- Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
- Hendriks L, Goris A, Neefs J, Van de Peer Y, Hennebert G, de Wachter R (1989) The nucleotide sequence of the small ribosomal subunit RNA of the yeast *Candida albicans* and the evolutionary position of the fungi among the Eukaryotes. Syst Appl Microbiol 12:223–229
- Ito K, Shibukawa K, Kobayashi T (1952) Etiological and pathological studies on the needle blight of *Cryptomeria japonica* I: morphology and pathogenicity of the fungi inhabiting the blighted needles (in Japanese). Bull Gov For Exp Stn Tokyo 52:79–152
- Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066
- Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518
- Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
- Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179
- Kobayashi T (1957a) Life cycle of shoot blight fungus, *Guignardia cryptomeriae* Sawada, of Japanese cedar: *Cryptomeria japonica* D. Don (in Japanese). J Jpn For Soc 38:16–19
- Kobayashi T (1957b) Studies on the shoot blight disease of Japanese cedar, Cryptomeria japonica D. Don, caused by Guignardia cryptomeriae Sawada (in Japanese). Bull Gov For Exp Stn Tokyo 96:17–36
- Kobayashi T (1962) A blight disease of larch caused by *Guignardia* cryptomeriae Sawada in comparison with the shoot blight caused by *Physalospora laricina* Sawada (in Japanese). J Jpn For Soc 44:282–286
- Kobayashi T, Sasaki K (1975) Notes on new or little-known fungi inhabiting woody plant in Japan VII. Trans Mycol Soc Jpn 16: 230–244
- Luttrell ES (1946) Black rot of muscadine grapes. Phytopathology 36:905–924
- Luttrell ES (1948) Physiologic specialization in *Guignardia bidwellii*, cause of black rot of *Vitis* and *Parthenocissus* species. Phytopathology 38:716–723
- Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lucking R, Lumbsch T, O'Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the

fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480

- Matsuda S, Takamatsu S (2003) Evolution of host-parasite relationships of *Golovinomyces* (Ascomycete: Erysiphaceae) inferred from nuclear rDNA sequences. Mol Phylogenet Evol 27:314–327
- Meyer L, Sanders GM, Jacobs R, Korsten L (2006) A one-day sensitive method to detect and distinguish between the citrus black spot pathogen *Guignardia citricarpa* and the endophyte *Guignardia mangiferae*. Plant Dis 90:97–101
- Miyashita S (2001) Studies on molecular phylogeny of *Guignardia* canker disease on *Cryptomeria japonica*, *Chamaecyparis obtusa* and other genera (in Japanese). Trans Jpn For Soc Tokyo 115:290
- Motohashi K, Nishikawa J, Akiba M, Nakashima C (2008) Studies on the Japanese species belonging to the genus *Phyllosticta* (1). Mycoscience 49:11–18
- Nakashima C, Kobayashi T (1997) Etiological studies on brown spot disease of *Pyracantha*. Ann Phytopathol Soc Jpn 63:309–315
- Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University
- O'Donnell K (1993) *Fusarium* and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallin gford, pp 225–233
- Okane I, Nakagiri A, Ito T (2001) Identity of *Guignardia* sp. inhabiting ericaceous plants. Can J Bot 79:101–109
- Okane I, Lumyong S, Nakagiri A, Ito T (2003) Extensive host range of an endophytic fungus *Guignardia endophyllicola* (anamorph: *Phyllosticta capitalensis*). Mycoscience 44:353–363
- Pandey AK, Reddy MS, Suryanarayanan TS (2003) ITS-RFLP and ITS sequence analysis of a foliar endophytic *Phyllosticta* from different tropical trees. Mycol Res 107:439–444
- Peres NA, Harakava R, Carroll GC, Adaskaveg JE, Timmer LW (2007) Comparison of molecular procedures for detection and identification of *Guignardia citricarpa* and *G. mangiferae*. Plant Dis 91:525–531
- Reusser FA (1964) Über einige Arten der Gattung *Guignardia* Viala et Ravaz. Phytopathol Z 51:205–240
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574
- Saccardo PA (1878) Fungi Veneti novi vel critici, series 7. Michelia 1:133–221
- Saccardo PA (1884) Sylloge fungorum omnium hucusque cognitorum, vol 3. Patavii, Italy (Lithoprinted by Edwars brothers INC, Michigan 1994)
- Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
- Sawada K (1950) Fungi inhabiting on conifers in the Tohoku district (I). Fungi on Sugi (*Cryptomeria japonica* D. Don.) (in Japanese). Bull Gov For Exp Stn Tokyo 45:27–53
- Stewart VB (1916) The leaf blotch disease of horse-chestnut. Phytopathology 6:5–19
- Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods), 4.0 Beta. Sinauer, Sunderland, MA
- Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86
- Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32
- van der Aa HA (1973) Studies in Phyllosticta. I. Stud Mycol 5:1-110
- van der Aa HA, Noordeloos ME, de Gruyter J (1990) Species concepts in some larger genera of the Coelomycetes. Stud Mycol 32:3–19
- van der Aa HA, Vanev S (2002) A revision of the species described in *Phyllosticta*. Centraalbureau voor Schimmelcultures, Utrecht
- White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322